OLE-97664

BCA 1st Semester (New)
 Examination - April, 2021 LOGICAL ORGANIZATION OF COMPUTER-I

Paper: BCA-104

Time : Three hours]

[Maximum Marks : 80
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt four questions by selecting one question from each Unit. All questions carry equal marks.

1. (a) What is Unicode? State its relevance. $2 \times 8=16$
(b) Which number system is followed in digital computers and why?
(c) What is BCD adder?
(d) What is meant by digital logic ? Explain.
(e) What is the smallest and largest integer number represented in a 32-bit computer ?
(f) What are code converters ?
(g) What is the difference between Boolean algebra and Real algebra?
(h) What are De-multiplexers ? State their importance.

UNIT - I

2. (a) What do you mean by parity bits? How are these relevant in error-detection and correction codes ? Illustrate through suitable examples.
(b) Find out the values of $\mathrm{X} . \mathrm{Y}$ and Z in the following:

$$
(82.875)_{10}=(\mathrm{X})_{2}=(\mathrm{Y})_{8}=(\mathrm{Z})_{16}
$$

3. Explain the following :
(a) Character Codes 8
(b) Floating-point Representation of numbers

UNIT - II

4. (a) What is principle of Duality? Illustrate.
(b) Simplify the following Boolean expression using K-map :
$F(a, b, c)=\Sigma(1,2,4,5,6,7)$ and realize the same using NOR gates.
5. Explain the following :
(a) Boolean Algebra 6
(b) SOPs and POSs 5
(c) Venn diagrams 5

OLE-97664- -(P-3)(Q-9)(21) (2)

UNIT - III

6. (a) What are AND-OR-INVERT and OR-ANDINVERT implementation ? Explain. 4
(b) What do you mean by multilevel NAND and NOR circuits ? Illustrate. 4
(c) What is combinational circuit ? What are its characteristics ? Detail out the procedure for design of combinational circuit. 8
7. (a) What are Universal Gates? Why these are named so ? Justify.
(b) Design a combinational circuit that receives 3-bit binary input and produces its 2 's complement. 10

UNIT - IV

8. (a) What is a full-adder ? Design a full-adder and implement the same using gates.
(b) What is a multiplexer? How does it work? What are its applications ? Explain.
9. Explain the following :
(a) Magnitude Comparators 8
(b) BCD to seven-segment Decoder 8
