Roll No.

OLE-97664

BCA 1st Semester (New) Examination – April, 2021 LOGICAL ORGANIZATION OF COMPUTER-I Paper : BCA-104

Time : Three hours]

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- *Note*: Question No. **1** is *compulsory*. Attempt *four* questions by selecting one question from each Unit. All questions carry equal marks.
 - **1.** (a) What is Unicode ? State its relevance. $2 \times 8 = 16$
 - (b) Which number system is followed in digital computers and why?
 - (c) What is BCD adder ?
 - (d) What is meant by digital logic ? Explain.
 - (e) What is the smallest and largest integer number represented in a 32-bit computer ?
 - (f) What are code converters ?
 - (g) What is the difference between Boolean algebra and Real algebra ?

(h) What are De-multiplexers ? State their importance.

UNIT – I

- 2. (a) What do you mean by parity bits ? How are these relevant in error-detection and correction codes ? Illustrate through suitable examples.7
 - (b) Find out the values of X. Y and Z in the following : 9

$$(82.875)_{10} = (X)_2 = (Y)_8 = (Z)_{16}$$

- **3.** Explain the following :
 - (a) Character Codes 8
 - (b) Floating-point Representation of numbers 8

UNIT – II

4.	(a)	What is principle of Duality? Illustrate.	6
	(b)	Simplify the following Boolean expression K-map :	using 10
		$F(a, b, c) = \Sigma (1, 2, 4, 5, 6, 7)$ and realize the same using NOR gates.	
5.	Exp	lain the following :	
	(a)	Boolean Algebra	6

- (b) SOPs and POSs 5
- (c) Venn diagrams 5
- OLE-97664- -(P-3)(Q-9)(21) (2)

UNIT – III

- **6.** (a) What are AND-OR-INVERT and OR-AND-INVERT implementation ? Explain. 4
 - (b) What do you mean by multilevel NAND and NOR circuits ? Illustrate. 4
 - (c) What is combinational circuit ? What are its characteristics ? Detail out the procedure for design of combinational circuit.
- 7. (a) What are Universal Gates? Why these are named so ? Justify.6
 - (b) Design a combinational circuit that receives 3-bit binary input and produces its 2's complement. 10

UNIT – IV

- 8. (a) What is a full-adder ? Design a full-adder and implement the same using gates.8
 - (b) What is a multiplexer ? How does it work? What are its applications ? Explain.
- **9.** Explain the following :
 - (a) Magnitude Comparators 8
 - (b) BCD to seven-segment Decoder 8

OLE-97664- -(P-3)(Q-9)(21) (3)