Roll No.

OLE-24476

B. Tech. 7th Semester (ME) Examination - April, 2021

STRENGTH OF MATERIAL-II

Paper: ME-401-F

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all. Question No. 1 is compulsory. Remaining, attempt one question from each Section. Each question carries equal marks.

1. Explain the following : $5 \times 4=20$
(a) Maxwell's Theorem
(b) Ellipse of Inertia
(c) Leme's Equation
(d) Stresse in Crane Hooks

SECTION - A

2. A beam 4 m in length is simply supported at the ends and carries a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ length. Determine the strain energy stored in the beam. $\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=1200 \mathrm{~cm}^{4}$.
3. (a) Write in brief various Theories of Elastic Failure.
(b) A circular shaft of 3 cm diameter is 2 m long. It is required to transmit 7.5 kW at 80 rpm . Determine the strain energy stored in the shaft. G $=84 \mathrm{GPa}$.

SECTION - B

4. Explain the following terms in detail :

20
(a) Shear centre and the flexural axis
(b) Slope of the natural axis
5. A boiler is subjected to an internal team pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The thickness of the boiler plate is 2.6 cm and the permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%. 20

SECTION - C

6. Derive the expression for Lamne's Equation for thick cylindrical shell.20
7. A steel disc of uniform thickness of diameter 90 mm isrotating about its axis at 3000 rpm . Determine the radial and circumferential stresses at the centre and the outer radius. The density of the material is $7800 \mathrm{~kg} / \mathrm{m}^{2}$ and Poisson ratio $=0.3$. 20

SECTION - D

8. Determine : 20
(a) Position of neutral axis
(b) Maximum and minimum stresses when curved beam of circular section of diameter 100 mm is subjected to pure bending moment of $+11.5 \mathrm{KN}-\mathrm{m}$. The Radius of curvatureis 100 mm .

9. Explain in details :
 20

(a) Open coiled helical spring subjected to axial load and twisting moment
(b) Concentric spring

