Roll No.

OLE-24291

B. Tech. 5th Semester (Civil) Examination - April, 2021

NUMERICAL METHODS AND COMPUTING TECHNIQUES

Paper : CE-309-F

Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any five question in total by selecting one from each Section. Question No. 1 is compulsory.

1. (a) Define Bezier curves.
(b) Write steps of Gauss elimination method.
(c) Solve $\frac{d y}{d x}=x+y, y(0)=1$, by Taylor's series method.
(d) Write finite difference approximation for $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial y^{2}}$.

SECTION - A

2. Using Newton's divided difference formula, evaluate $f(8)$ and $f(15)$ given :

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

3. Find the positive root of $x^{4}-x=10$, correct to three decimal places, by using :
(i) Newton-Raphson method
(ii) Bisection method

SECTION - B

4. Solve $10 x-7 y+3 z+5 u=6, \quad-6 x+8 y-z-4 u=5$, $3 x+y+4 z+11 u=2,5 x-9 y-2 z+4 u=7$ by GaussJordan method.
5. Use Romberg's method to compute $\int_{0}^{1} \frac{d x}{1+x^{2}}$ correct to four decimal places.

SECTION - C

6. Using Runge-Kutta method of order 4, find y for $x=$ $0.1,0.2,0.3$ given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1$. Continue the solution at $x=0.4$ using Milne's method.
7. Find the largest eigen value and the corresponding eigen vector of the matrix $\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ using power method, take $[1,0,0]^{T}$ as initial eigen vector.

SECTION - D

8. Obtain Standard five point formula for Laplace equation.
9. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=$ $20, u(0, t)=0, u(5, t)=100$. Compute u for the time step with $h=1$ by Crank-Nicholson method.
