OLE-3229

B. Tech. 5th Semester (CSE) Examination – April, 2021 FORMAL LANGUAGES & AUTOMATA

Paper: PCC-CSE-305-G

Time: Three Hours [Maximum Marks: 75]

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt *five* questions in all, selecting *one* question from each Unit. Question No. 1 is *compulsory*. All questions carry equal marks.

- **1.** (a) Draw a diagram of Mealy and a Moore machines. Also process a string of your choice on given diagrams.
 - (b) Can we use pumping lemma to prove that certain languages are regular? Justify your answer.
 - (c) Which machine have more computing power Finite Automat or Pushdown automata? Justify your answer.

- (d) Define Linear Bounded Automata. Also draw the diagram.
- (e) What are useless productions and why they are useless in CFG? Explain by taking a suitable example. $5 \times 3 = 15$

UNIT - I

2. (a) Minimize the given Automata (by using equivalence method only i.e. $\pi 0$, $\pi 1$, $\pi 2$ method). 8

(b) $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$ is a NDFA, where δ is given by :

$$\begin{split} \delta(q_1, 0) &= \{q_2, q_3\}, & \delta(q_1, 1) &= \{q_1\} \\ \delta(q_2, 0) &= \{q_1, q_2\}, & \delta(q_2, 1) &= \emptyset \\ \delta(q_1, 0) &= \{q_2\}, & \delta(q_2, 1) &= \{q_1, q_2\} \end{split}$$

Construct an equivalent DFA by converting the states into substates method only.

3. (a) Construct a DFA for given NFA (by converting the states into substates method only): 8

(b) Construct a D F A which accept strings which have substring "baab".

UNIT - II

4. (a) Find regular expression for the given diagram: 7

- (b) Show that $L = \{a^n b^n c^n \mid n \ge 1\}$ is not regular.
- **5.** (a) Construct a DFA for the regular expression. 7 = ba + (a + bb)a * b
 - (b) Find regular expression for the given diagram: 8

UNIT - III

6.	(a)	Construct a PDA to accept the palindrom (Transition diagram and table both)	es 8
	(b)	Consider the C.F.G. and derive the string ω baabaabb from the given grammar which $S\to aSbS bSaS \epsilon$	
7.	(a)	Convert the following grammar into G.N.F.	8
		$S \rightarrow aAS \mid a$	
		$A \rightarrow SbA \mid SS \mid ba$	
	(b)	Construct a PDA to accept the language	7
		$L = \{a^n b^m a^n n, m \ge 1\}$	
UNIT – IV			
8.	(a)	Explain the complete details of Chomslehierarchy of languages.	ky 0
	(b)	Design a T.M. which increments the input decimnumber by 1.	al 5
9.	(a)	Design a Turing Machine to check whether given unary number is divisible by '3' or not.	а 8
	(b)	Write a detailed note on relation between type grammars in Chomsky hierarchy.	of 7