\qquad

OLE-3219

B. Tech. 5th Semester (ECE)
 Examination - April, 2021
 DIGITAL SIGNAL PROCESSING

Paper : PCC-ECE-307-G

> | Time : Three Hours] Maximum Marks: 75 |
| :--- |
| Before answering the questions, candidates should ensure that they |
| have been supplied the correct and complete question paper. No |
| complaint in this regard, will be entertained after examination. |
| Note: Attempt five questions in all, selecting at least one |
| $\begin{array}{l}\text { question from each Unit. Question No. } 1 \text { is } \\ \text { compulsory. All questions carry equal marks. }\end{array}$. |

1. (a) Define system with an example.
(b) Explain Region of Convergence (ROC).
(c) Define Butterfly unit.
(d) List out the application of filters.
(e) List out the techniques of designing FIR filters.
(f) Define multirate signal processing. 6×2.5

UNIT - I

2. (a) Explain the classification of system. 6
(b) Explain the process of reconstruction of signals from it samples. Also explain aliasing effect and how it is minimized.

9
3. (a) Find the z-transform and Roc of the signal 8

$$
x(n)=\left[3\left(2^{n}\right)-4\left(3^{n}\right)\right] 4(n)
$$

(b) Explain the properties of z-transform.

UNIT - II

4. Explain the DIF FFT algorithms. 15
5. Determine the 8 -point DFT of sequence $x(n)=\{1,1,1$, $0,1,1,0,1\}$

UNIT - III
6. (a) Differentiate between Ideal and Practical filters. 5
(b) Design of FIR Filter by using Window technique.
7. (a) Find transfer function, $\mathrm{H}(\mathrm{z})$, by appling bilinear transformation to

$$
H(S)=\frac{2}{(S+1)(S+2)} \text { with } \mathrm{T}=1
$$

(b) Explain Digital frequency transformation.

UNIT - IV

8. Obtain the polyphase decompositions of IIR digital
system having following transfer function 15
$H(z)=\frac{1-4 z^{-1}}{1+5 z^{-1}}$
9. Write down notes on any two :
(a) Decimator
(b) Digital Filter banks
(c) Interpolator
