OLE-3073

B. Tech. 3rd Semester (ME) Examination - April, 2021

ENGINEERING MECHANICS

Paper : ESC-ME-209-G

Time : Three Hours]

[Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question 1 is compulsory and of short answers type. Each question carries equal marks (15 marks). Students have to attempt 5 questions in total at least one question from each Section.

1. (a) State the Varignon's principle of moments.
(b) How would you find out the center of gravity of a section, with a cut out hole?
(c) A hollow semicircular section has its outer and inner diameter of 200 mm and 120 mm respectively. What is it's moment of inertia about its base AS ?
(d) Define perpendicular axis theorem.
(e) Distinguish clearly between uniformly distributed load, uniformly varying load and triangular load.
(f) Difference between Redundant and Deficient truss. $2.5 \times 6=15$

SECTION - A

2. A force F acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=68^{\circ}$ and $\theta_{z}=55^{\circ}$. The component of force F along y direction is -125 N . find out :
(a) angle θ_{y}
(b) magnitude of force F
(c) component of force along X and Z direction
(d) component of force on a line that passes through the origin and point $(1,1,1)$.
3. (a) State and prove Lami's theorem. 7.5
(b) Three forces acting on a particle are in equilibrium. The angle between the first and second is 90° and that between the second and third is 120°. Find the ratio of the forces. 7.5

SECTION - B

4. Find the forces in all the members of the truss shown in fig. 1 :

15

Fig. 1
OLE-3073- $\quad-(\mathrm{P}-4)(\mathrm{Q}-9)(21) \quad$ (2)
5. Determine the center of gravity of the lamina shown in fig. 2 :

Fig. 2

SECTION - C

6. Determine the moment of inertia of a T section about the horizontal and vertical axis passing through the centre of gravity of the section having dimensions $10 \times 10 \times 2 \mathrm{~cm}$ as shown in fig. 3. Also determine the polar moment of inertia.

Fig 3

OLE-3073- $\quad-(\mathrm{P}-4)(\mathrm{Q}-9)(21) \quad(3)$
P. T. O.
7. (a) Explain relative velocity and acceleration for a points on rigid body. 7.5
(b) Discuss Chasles' theorem in details. 7.5

SECTION - D

8. Draw the shear force and B.M. diagrams for a simply supported beam of length 8 m carrying a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ for a distance of 4 m as shown in fig. 4 :

Fig 4
9. (a) Derive horizontal range and maximum height of a projectile.
(b) A car is moving at $15 \mathrm{~mm} / \mathrm{sec}$ when drivers puts on his brakes, thereby car skids n the direction of motion. Car weighs 500 kg and dynamic coefficient of friction is 0.6 . How far will car moves before it stops ? 7.5

OLE-3073- $\quad-(P-4)(Q-9)(21) \quad(4)$

