OLE-24046

B. Tech. 3rd Semester (MAE) Examination - April, 2021

THERMODYNAMICS

Paper: ME-201-F
Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

1. Explain following :
(a) Describe the concept of control volume.
(b) Explain carnot heat engine.
(c) Explain avogadro's law and universal gas constant.
(d) Discuss ericson cycle.
$5 \times 4=20$

OLE-24046- $\quad-(\mathrm{P}-4)(\mathrm{Q}-9)(21)$
P. T. O.

SECTION - I

2. (a) Explain actual and quasiequilibrium processes. 7
(b) What is thermal equilibrium ? Discuss Kelvin and Celsius scales.
(c) Discuss perpetual-motion machine that violates the second law of Thermodynamics.
3. A gas in a piston-cylinder assembly undergoes an expansion process for which the relationship between pressure and volume is given by

$$
\mathrm{pV} \mathrm{~V}^{\mathrm{n}}=\text { Constant }
$$

The initial pressure is 3 bar, the initial volume is $0.1 \mathrm{~m}^{3}$ and the final volume is $0.2 \mathrm{~m}^{3}$. Determine the work for the process, in $k J$, if (a) $n=1.5$, (b) $n=1.0$ and (c) $n=0$.

SECTION - II

4. (a) A heat pump receives energy by heat transfer from the outside air at $0^{\circ} \mathrm{C}$ and discharges energy by heat transfer to a dwelling at $20^{\circ} \mathrm{C}$. Is this in

OLE-24046- $\quad-(P-4)(Q-9)(21)(2)$
violation of the Clausius statement of the secondlaw of thermodynamics? Explain.12
(b) Explain Clausius Inequality. 8
5. A cylinder of an internal combustion engine contains $2450 \mathrm{~cm}^{3}$ of gaseous combustion products at a pressure of 7 bar and a temperature of $867^{\circ} \mathrm{C}$ just before the exhaust valve opens. Determine the specific energy of the gas, in $\mathrm{kJ} / \mathrm{kg}$. Ignore the effects of motion and gravity and model the combustion products as air as an ideal gas. Take $\mathrm{T}_{0}=300 \mathrm{~K}\left(27^{\circ} \mathrm{C}\right)$ and $\mathrm{P}_{0}=1.013$ bar.

SECTION - III

6. (a) Explain the process of steam formation from with suitable $\mathrm{p}-\mathrm{v}$ and T -s diagrams. 12
(b) What is dryness fraction of steam ? How will you measure it ? 8
7. (a) Discuss Vander Waal's Equation of state. 10
(b) Describe enthalpy changes of real gases. 10
OLE-24046- -(P-4)(Q-9)(21) (3) P. T. O.

SECTION - IV

8. (a) Explain Clapeyron equation.

10
(b) Show that the Joule-Thomson coefficient of an ideal gas is zero. 10
9. Derive an expression for efficiency of dual cycle.

20

