Roll No.

OLE-24046

B. Tech. 3rd Semester (MAE) Examination – April, 2021

THERMODYNAMICS

Paper : ME-201-F

Time : Three Hours]

[Maximum Marks : 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- *Note*: Attempt *five* questions in all, selecting *one* question from each Section. Question No. **1** is *compulsory*. All questions carry equal marks.
- **1.** Explain following :
 - (a) Describe the concept of control volume.
 - (b) Explain carnot heat engine.
 - (c) Explain avogadro's law and universal gas constant.
 - (d) Discuss ericson cycle. $5 \times 4 = 20$

OLE-24046- -(P-4)(Q-9)(21) P. T. O.

SECTION - I

- **2.** (a) Explain actual and quasiequilibrium processes. 7
 - (b) What is thermal equilibrium ? Discuss Kelvin and Celsius scales.7
 - (c) Discuss perpetual-motion machine that violates the second law of Thermodynamics.
- **3.** A gas in a piston-cylinder assembly undergoes an expansion process for which the relationship between pressure and volume is given by

 $pV^n = Constant$

The initial pressure is 3 bar, the initial volume is 0.1 m^3 and the final volume is 0.2 m^3 . Determine the work for the process, in kJ, if (a) n = 1.5, (b) n = 1.0 and (c) n = 0. 20

SECTION - II

4. (a) A heat pump receives energy by heat transfer from the outside air at 0°C and discharges energy by heat transfer to a dwelling at 20°C. Is this in

OLE-24046- -(P-4)(Q-9)(21) (2)

violation of the Clausius statement of the second law of thermodynamics ? Explain. 12

- (b) Explain Clausius Inequality. 8
- **5.** A cylinder of an internal combustion engine contains 2450 cm³ of gaseous combustion products at a pressure of 7 bar and a temperature of 867°C just before the exhaust valve opens. Determine the specific energy of the gas, in kJ/kg. Ignore the effects of motion and gravity and model the combustion products as air as an ideal gas. Take $T_0 = 300$ K (27°C) and $P_0 = 1.013$ bar. 20

SECTION - III

6.	(a)) Explain the process of steam formation from		
		suitable p-v and T-s diagrams.	12	
	(b)	What is dryness fraction of steam ? How will	you	
		measure it ?	8	
7.	(a)	Discuss Vander Waal's Equation of state.	10	
	(b)	Describe enthalpy changes of real gases.	10	

OLE-24046- -(P-4)(Q-9)(21) (3)

P. T. O.

SECTION - IV

8.	(a)	Explain Clapeyron equation.	10
	(b)	Show that the Joule-Thomson coefficient of	an
		ideal gas is zero.	10
9.	Der	rive an expression for efficiency of dual cycle.	20