OLE-3027

B. Tech. 3rd Semester (Civil Engg.) Examination - April, 2021

ENGINEERING MECHANICS

Paper : PCC-CE-203-G

Time : Three Hours]

[Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

1. (i) What is mean by factor of safety?
(ii) What do you mean by Mohr's correction?
(iii) What is the assumption made in the analysis of a pin-jointed plane truss ?
(iv) State the assumption for shearing stress in a circular shaft subjected to torsion.
(v) How do you relate intensity of loading, shearing force and bending moment ?
(vi) What is the maximum bending moment for a simply supported beam subjected to uniformly distributed load and where it occurs ?

SECTION - A

2. A steel bar is placed between two copper bars each having the same area and length as the steel bars at $15^{\circ} \mathrm{C}$. At this stage, they are rigidly connected together at both the ends. When the term perature is raised to $315^{\circ} \mathrm{C}$, the length of the bars increased by 1.5 mm . Determine the original length and final stresses in bars. Take $\mathrm{Es}=210 \times 10^{5} \mathrm{GN} / \mathrm{m}^{2} ; \mathrm{Ec}=110 \mathrm{GN} / \mathrm{m}^{2}$; $\alpha \mathrm{s}=0.000012$ per degree centigrade; $\alpha c=0.0000175$ per degree centigrade.
3. At a certain point in a strained material, the principal stresses are $100 \mathrm{MN} / \mathrm{m}^{2}$ and $40 \mathrm{MN} / \mathrm{m}^{2}$ both tensile. Find the normal, tangential and resultant stresses across a plane through the point at 48° to the major principal plane.

SECTION - B

4. An overhanging beam ABC of length 8 m is simply supported at B and C over a span of 6 m and the portion AB overhangs by 2 m . Draw the shearing
force, bending moment diagram and determine the point of contra-flexure if it is subjected to uniformly distributed loads of $5 \mathrm{kN} / \mathrm{m}$ over the portion AB and 4 kN / m over the portion BC .
5. The moment of inertia of a symmetrical section of a beam about its neutral axis is $2500 \mathrm{~cm}^{4}$ and its depth is $25 \mathrm{~cm}^{4}$. Determine the longest span over which, when simply supported, the beam would carry a uniformly distributed load $6 \mathrm{kN} / \mathrm{m}$ run without the stress due to bending exceeding $130 \mathrm{MN} / \mathrm{m}^{2}$.

SECTION - C

6. A steel shaft 1.5 m long, 40 mm diameter is rigidly fixed at the ends. A torque of 720 Nm is applied at a distance of 250 mm from one end. Calculate (i) fixing couple at the ends (ii) maximum shearing stress (iii) angle of twist at the point of application of torque. $\mathrm{C}=85 \mathrm{GN} / \mathrm{m}^{2}$.
7. A steel strut has an outside diameter of 120 mm and inside diameter of 80 mm and is 6 m long. It is hinged at both ends and is initially bent. Assuming the centre line of the strut as sinusoidal with maximum deviation of 6 mm , determine the maximum stress developed due to an axial load of 100 kN . Take $\mathrm{E}=208 \mathrm{GN} / \mathrm{m}^{2}$.

SECTION - D

8. Analyse the pin jointed truss as shown by the method of section.

9. A circular steel shaft is subjected to combined bending and torsion, the bending moment being 20 kNm and torque 10 kNm . If safe equivalent stress in simple tension is $200 \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ration is 0.25 . Find suitable diameter of the shaft based on following theories.
(i) Maximum principal stress theory.
(ii) Maximum shear stress theory.
(iii) Shear strain energy theory.
