Roll No.

OLE-3044

B. Tech. 3rd Semester (EE)
 Examination - April, 2021

ENGINEERING MECHANICS

Paper: ESC-EE-202-G
Time : Three Hours]
[Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five question in all, selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

1. (a) What is a tensor in simple terms? $1.5 \times 10=15$
(b) Define eigenvalues and eigenvectors.
(c) Define linear and angular momentum equations.
(d) State work-energy equation.
(e) Difference between area moment of inertia and mass moment of inertia.
(f) Write the assumptions, which are made, while finding out the reactions of a beam or a frame having both ends fixed.
(g) Define the term "support reaction".
(h) State laws of Coulomb friction.
(i) Differentiate between center of mass and center of gravity.
(j) State parallel and perpendicular axes theorems.

SECTION - A

2. State and prove Euler's theorem. 15
3. A force F acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=68^{\circ}$ and $\theta_{z}=55^{\circ}$. The component of force F along y direction is -125 N . find out:
(a) angle θ_{y}
(b) Magnitude of force F
(c) Component of force along X and Z direction

SECTION - B

4. Three links are hinged together to form a triangle $A B C$ as shown in fig. 1. At a certain instant, the point A is
OLE-3044- -(P-4)(Q-9)(21) (2)
moving towards the mid-points of $B C$ with a velocity of $5 \mathrm{~m} / \mathrm{s}$ and B is moving at a perpendicular direction to AC. Find the velocity of C.

Fig. 1

Abstract

5. State and prove parallel and perpendicular axis theorem.15

SECTION - C

6. Explain free body diagrams with examples. What are the forces included and excluded in when drawing F.B.D? Also state the method used for the analysis of F.B.D. 15
7. Explain the following with diagram : 15
(a) General planar motions
(b) General 3-D motions
(c) Free precession

SECTION - D

8. Draw the S.F. and B.M. diagrams for the overhanging beam carrying uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over the entire length and a point load of 2 kN as shown in fig. 2.

Fig. 2
9. (a) Derive equation of torsion. 7.5×2
(b) State laws of static and dynamic friction.

