OLE-24066

B. Tech. 3rd Semester (Civil) Examination - April, 2021

FLUID MECHANICS - I

Paper : CE-205-F

Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in total selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

1. (i) Explain compressibility and capillarity.
(ii) What is a Fluid ? How are fluids classified ?
(iii) Explain effect of temperature on Viscosity.
(iv) Define total pressure and centre of pressure.
(v) List the assumptions which are made while deriving Bernoulli's equation. $5 \times 4=20$

SECTION - A

2. (a) A vertical cylinder of diameter 180 mm rotates concentrically inside another cylinder of diameter 181.2 mm . Both the cylinders are 300 mm high. The space between the cylinders is filled with a Liquid whose viscosity is unknown. Determine the viscosity of the fluid if a torque of 20 Nm is required to rotate the inner cylinder at 120 r.p.m. 10
(b) Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter, when immersed in (i) water and (ii) mercury. The temperature of the liquid is $20^{\circ} \mathrm{C}$ and the values of surface tension of water and mercury at $20^{\circ} \mathrm{C}$ in contact with air are $0.0735 \mathrm{~N} / \mathrm{m}$ and $0.51 \mathrm{~N} / \mathrm{m}$ respectively. The contact angle for water $\theta=0^{\circ}$ and for mercury $\theta=130^{\circ}$. Take specific weight of water at $20^{\circ} \mathrm{C}$ as equal to $9790 \mathrm{~N} / \mathrm{m}^{3}$. 10
3. (a) The velocity potential function for a twodimensional flow is $\phi=x(2 y-1)$. At a point $P(4,5)$ determine : (i) The Velocity, and (ii) The value of stream function. 10
(b) Explain Flow nets and methods of drawing flow nets. Also define uses of flow nets.

$$
10
$$

SECTION - B

4. Explain briefly the following with neat sketches : 20
(i) Piezometer.
(ii) U-tube manometer.
(iii) Differential manometers.
(iv) Absolute and Gauge Pressure
5. (a) A 1.0 m wide and 1.5 m deep rectangular plane surface lies in water in such a way that its plane makes an angle of 30° with the free water surface. Determine the total pressure and position of centre of pressure when the upper edge is 0.75 m below the free water surface. 10
(b) A wooden block of width 1.25 m , depth 0.75 m and length 3.0 m is floating in water. Specific Weight of the wood is $6.4 \mathrm{kN} / \mathrm{m}^{3}$. Find :
(i) Volume of water displaced, and
(ii) Position of centre of buoyancy.

SECTION - C

6. (a) Water is flowing through a pipe having diameters 600 mm and 400 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $350 \mathrm{kN} / \mathrm{m}^{2}$ and the pressure at the upper end is $100 \mathrm{kN} / \mathrm{m}^{2}$. Determine the difference in datum head if the rate of flow through the pipe is 60 litres $/ \mathrm{sec}$.
(b) A horizontal venturi meter with inlet diameter 200 mm and throat thickness 100 mm is used to measure the flow of water. The pressure at inlet is $0.18 \mathrm{~N} / \mathrm{mm}^{2}$ and the vacuum pressure at the throat is 280 mm of mercury. Find the rate of flow. The value of C_{d} may be taken as 0.98 .
7. (a) A smooth plate 2 m wide and 2.5 m long is towed in oil (sp. Gr. $=0.8$) at a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ along its length. Find the thickness of boundary layer and shear stress at the trailing edge of the plate. $\mathrm{V}_{\text {oil }}=10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.

$$
\text { OLE-24066- -(P-4)(Q-9)(21) (} 3 \text {) P. T. O. }
$$

(b) In which cases the boundary layer separation takes place and also discuss the methods of Preventing the separation of boundary layer. 10

SECTION - D

8. Determine the dimensions of the following quantities:20
(i) Discharge
(ii) Kinematic viscosity
(iii) Force, and
(iv) Specific weight.
9. A 7.2 m high and 15 m long spillway discharges 94 $\mathrm{m}^{3} / \mathrm{s}$ discharge under a head of 2.03. If 1:9 Scale model of this spillway is to be constructed, determine model dimensions, head over spillway model and the model discharge. If model experiences a force of 7500 N , determine force on the prototype. 20
