OLE-24041

B. Tech. 3rd Sem. (CS \& IT) Examination - April, 2021

DISCRETE STRUCTURE

Paper : CSE-203-F

Time : Three Hours]

[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

1. (a) Let $X=\{a, b, c\}$. Consider function $f: X \rightarrow X$ such that $f=\{(a, b),(b, a),(c, c)\}$. Determine f^{-1}.
(b) Consider the following statements :
p : He is coward.
q : He is lazy.
Write the compound statement "he is neither coward nor lazy" in the symbolic form.
(c) When is a group $\left(\mathrm{G},{ }^{*}\right)$ called abelian ?
(d) Give an example of Hamiltonian graph which is not Euler.
(e) Define a semigroup.
(f) For what values of n does K_{n}, the complete graph on n nodes have an Euler circuit ?
(g) Write the generating function for the sequence : $1, a, a^{2}, a^{3}, \ldots$.

SECTION - A

2. (a) Define the following terms with suitable examples : 12
(i) Bijective function
(ii) Partial order relation
(iii) Lattice
(b) Define equivalence relation. Suppose that R_{1} and R_{2} are equivalence relations on set S. Determine whether each of these combinations of R_{1} and R_{2} must be an equivalence relation :
(i) $\mathrm{R}_{1} \cap \mathrm{R}_{2}$
(ii) $\mathrm{R}_{1} \cup \mathrm{R}_{2}$

Justify your answer.
3. (a) Classify the following propositions into Tautologies and contradiction : 10
(i) $\quad(p \leftrightarrow q) \leftrightarrow((p \wedge q) \vee(\sim p \wedge \sim q))$
(ii) $p \vee \sim(p \wedge q)$
(b) State and prove De Morgan's law of algebra of sets.

10

OLE-24041- $\quad-(P-4)(Q-9)(21)(2)$

SECTION - B

4. (a) Solve the recurrence relation $a_{r+2}-5 a_{r+1}+6 a_{r}=r^{2}$.
(b) Find the sum of first n terms of the series:

$$
0.5+0.55+0.555+0.5555+\ldots
$$

5. (a) How many bit strings contain exactly eight 0's and ten 1 's if every 0 must be followed by a 1.
(b) A five person committee having members Ankit, Ravi, Mohan, Amit and Rohit is to select president, vice president and secretary: 10
(i) In how many ways can this occur if either Ravi or Mohan must be president ?
(ii) How many ways are there in which either Amit is secretary or he is excluded ?

SECTION - C

6. (a) Differentiate between the following : 12
(i) Group and Field
(ii) Homomorphism, Isomorphism and Automorphism
(b) Consider an algebraic system $\left(Q,{ }^{*}\right)$ where Q is set of all rational numbers and * is binary operation defined by -

$$
a^{*} b=a+b-a b \text { for all } a, b \in Q
$$

Determine whether $\left(Q,{ }^{*}\right)$ is a group.

$$
\text { OLE-24041- -(P-4)(Q-9)(21) (} 3 \text {) P. T. O. }
$$

7. (a) Define the following terms with suitable examples:
(i) Coset
(ii) Cyclic group
(iii) Integral Domain
(b) State and Prove Lagrange's theorem.

SECTION - D

8. (a) Define the following terms with suitable examples:

12
(i) Spanning Tree
(ii) Euler graph
(iii) Planar graph
(b) Prove that number of odd degree vertices in an undirected graph is even.
9. (a) Find the shortest path between a and z using Dijkstra's algorithm :

10

(b) Draw the unique binary tree for the given Inorder and Postorder traversal :

10
Inorder: $\begin{array}{llllllllllllll}4 & 6 & 10 & 12 & 8 & 2 & 1 & 5 & 7 & 11 & 13 & 9 & 3\end{array}$
Postorder: $\begin{array}{llllllllllllll}12 & 10 & 8 & 6 & 4 & 2 & 13 & 11 & 9 & 7 & 5 & 3 & 1\end{array}$

