Roll No.

OLE-24002

B. Tech. 1st Semester (Common for All Branches) Examination - April, 2021

MATHEMATICS-I

Paper : Math-101-F

Time : Three Hours]

[Maximum Marks :100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in total by selecting one question from each Section. Question No. 1 is compulsory.

1. (a) Test the convergence of the series

$$
\sum_{n=1}^{\infty}\left(\sqrt{n^{2}+1}-n\right)
$$

(b) If A and B are orthogonal matrices, prove that $A B$ is also orthogonal.
(c) Expand $\log \sin x$ in powers of $(x-3)$.
(d) Define Beta and Gamma functions.

SECTION - A

2. Discuss the convergence of the series :

$$
1+\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+\frac{4!}{5^{4}} x^{4}+\ldots \ldots \ldots
$$

3. Test the convergence and absolute convergence of the series :

$$
\frac{1}{2(\log 2)^{p}}-\frac{1}{3(\log 3)^{p}}+\frac{1}{4(\log 4)^{p}}-\ldots \ldots \ldots \infty(p>0) .
$$

SECTION - B

4. (a) Find the rank of the matrix :

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

(b) For what values of parameters λ and μ do the system of equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu \quad$ have (i) no solution (ii) unique solution (iii) more than one solution?
5. Find the Eigen values, Eigen vectors and verify Cayley Hamilton theorem for the matrix :

OLE-24002- -(P-4)(Q-9)(21) (2)

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

SECTION - C

6. (a) If $y=\left(x^{2}-1\right)^{n}$, prove that

$$
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0 .
$$

(b) Find the points on the parabola $y^{2}=8 x$ at which the radius of curvature is $7 \frac{13}{16}$.
7. (a) Find the points on the surface $z^{2}=x y+1$ nearest to the origin.
(b) Evaluate:

$$
\int_{0}^{\infty} \frac{\tan ^{-1} a x}{x\left(1+x^{2}\right)} d x(a \geq 0)
$$

by applying differentiation under the integral sign.

SECTION - D

8. (a) Change into polar co-ordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x$.
(b) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.
9. Evaluate $\iiint_{R}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$, where R denotes the region bounded by $x=0, y=0, z=0$ and $x+y+z=a,(a>0)$.
