OLE-3007

B. Tech. 1st Semester (ME)
 Examination - April, 2021

MATH - I (CALCULUS AND MATRICES)

Paper: BSC-MATH-101-G
Time : Three Hours] [Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.
Note: Attempt five questions in total by selecting one from each Unit. Question No. 1 is compulsory.

1. (a) State mean value theorem.
(b) Give relation between Beta and Gamma function.
(c) Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{1}{n}$.
(d) If $u=e^{x y z}$, find the value of $\frac{\partial^{3} u}{\partial x \partial y \partial z}$.
(e) Define rank of matrix.
(f) Define orthogonal matrix.

UNIT - I

2. (a) Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
(b) Find the Maclaurin's theorem with Lagrange's form of remainder for $f(x)=\cos x$.
3. (a) Find the evolute of the curve

$$
x=a \cos ^{3} \theta, y=a \sin ^{3} \theta
$$

(b) Find the volume formed by the revolution of loop of the curve $y^{2}(a+x)=x^{2}(3 a-x)$, about the x axis.

UNIT - II

4. (a) Test the Convergence of the series

$$
\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+
$$

(b) Expand $\log _{e} x$ in powers of $(x-1)$.
5. Expand $f(x)=x$ as half range sine and cosine series in $0<x<2$.

UNIT - III

6. (a) Find the points on the surface $z^{2}=x y+1$ nearest to the origin.
(b) If $z=\tan (y+a x)-(y-a x)^{\frac{2}{2}}$, show that $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$.
7. (a) Find a unit vector normal to the surface $x y^{3} z^{2}=4$ at the point $(-1,-1,2)$.
(b) Find the value of a if the vector $\left(a x^{2} y+y z\right) i+\left(x y^{2}-x z^{2}\right) j+\left(2 x y z-2 x^{2} y^{2}\right) k \quad$ has zero divergence.

UNIT - IV

8. (a) Reduce the following matrix into its normal form and hence find its rank :

$$
A=\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

(b) Test for consistency and solve $2 x-3 y+7 z=5$,

$$
3 x+y-3 z=13,2 x+19 y-47 z=32
$$

9. Find the eigen values, eigen vectors and verify CayleyHamilton theorem of the matrix :

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

