Roll No. \qquad

OLE-3004

B. Tech. 1st Semester (Civil Engg.) Examination - April, 2021
 MECHANICS

Paper: BSC-PHY-104-G

Time : Three Hours]

[Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note : Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

1. (a) Explain the effect of rotational transformation on a scaler.
(b) Discuss the effect of Coriolis force in formation of cyclons.
(c) What do you mean by coefficient of friction?
(d) What are the Inertial and non-inertial frame of reference?
(e) A hollow sphere and a solid sphere having the same mass and same radius are rolled down a rough plane surface. Which one has a larger moment of inertia? And why?
(f) Find out if the force field (i) $F(x, y)=F(x, y)=y z i$ $+z x \mathrm{j}+x y k$ is conservative or not. (where i, j and k are unit vector along x, y and z axis respectively)

$$
6 \times 2.5=15
$$

UNIT - I

2. Derive the expression for Newton second law in spherical polar co-ordinate. 15
3. (a) What do you mean by constraints motion, explain it with suitable examples. Write the equation of motion for a bead of mass moving on a wire inclined at an angle a with the horizontal. 10
(b) Write A short note on different type of Forces in nature.

UNIT - II

4. What are different type of fictitious forces in a uniformly rotating frame of reference ? And explain the effect of centrifugal force on acceleration due to gravity (g). 15

$$
\text { OLE-3004- } \quad-(\mathrm{P}-4)(\mathrm{Q}-9)(21) \quad(2)
$$

5. Drive the energy equations and its energy diagram in central force field. and hence discuss the condition for hyperbolic, parabolic, elliptical and circular orbits. 15

UNIT - III

6. (a) Define kinetic energy of rotation. Derive an expression between kinetic energy of rotation moment of inertia and angular velocity. 10
(b) A sphere of radius of 0.3 m . Calculate its moment of inertia about any diameter. Density of material is $7.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
7. (a) Discuss relation between angular momentum and angular velocity and hence define moment of inertia tensor.
(b) Derive Euler's equation of motion of a rigid body.

UNIT - IV

8. (a) Write a short note on Friction by discussing its limiting and non-limiting case.
(b) A mass of 10 kg is at rest on a floor. Value of coefficient of friction is $\mu_{\mathrm{s}}=0.3$. Find out the limiting friction. Further, what happens if force along horizontal axes applied is (i) 25 N (ii) 30 N ? 7
9. (a) Define trusses and explain perfect and non perfect trusses. What are the main assumptions in truss analysis?
(b) Analyse the given truss of $B C=5 m$ span, loaded and supported as shown in figure. Find the magnitude and nature of the force in all members.

